Cycloaddition behavior of unsymmetric cyclopentadienone. Peri- and regio-selectivities

Tamaki Jikyo, Masashi Eto and Kazunobu Harano*
Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan. E-mail: harano@gpo.kumamoto-u.ac.jp

Received (in Cambridge) 19th June 1998, Accepted 20th August 1998

An asymmetrically substituted cyclopentadienone, 2-methoxycarbonyl-5-methyl-3,4-diphenylcyclopentadienone 1a, was synthesized and cycloadditions of compound 1a with various unsaturated compounds involving conjugated medium-ring polyenes were investigated. The cycloaddition behavior was analyzed by frontier molecular orbital (FMO) theory, indicating that the reactivity, stereo- and regio-selectivities observed are entirely consistent with the FMO predictions.

Introduction

Cyclopentadienones $\mathbf{1}$ are reactive and versatile diene components having very low lowest unoccupied molecular orbital (LUMO) energy levels. However, there are not many cyclopentadienones existing as monomers. Kanematsu and Harano made a systematic study of the pericyclic reactions of some monomeric cyclopentadienones with general dienophiles and conjugated medium-ring polyenes, establishing the possible reaction pathways as outlined in Scheme 1, which involve all of

Scheme 1
the thermally allowed cycloadducts from dienones $\mathbf{1}$ and conjugated seven-membered polyenes by either a direct or an indirect pathway. ${ }^{1}$ The pericyclic reaction behavior has been rationalized in terms of frontier molecular orbital (FMO) interactions. ${ }^{2}$

In these previous studies, the reaction behavior of symmetrically substituted cyclopentadienones has been extensively investigated. However, cycloadditions of asymmetrical cyclopentadienones have been investigated far less and their regioselectivities have not yet been clarified. ${ }^{3}$

These backgrounds prompted us to investigate the pericyclic reactions of asymmetrical cyclopentadienones with unsaturated compounds involving conjugated medium-ring polyenes. In the present investigation, we prepared an asymmetrical cyclopentadienone, 2-methoxycarbonyl-5-methyl-3,4-diphenylcyclopentadienone 1a, and qualitatively analyzed its reaction behavior in terms of FMO theory. The results are discussed here in detail in comparison with previous works.

Results

Cycloaddition of dienone 1a with general olefins

The cyclopentadienone 1a was prepared according to the synthetic method ${ }^{4}$ for 2,5 -bismethoxycarbonyl-3,4-diphenylcyclopentadienone $\mathbf{1 b}$ by application of more severe reaction conditions than for analogue $\mathbf{1 b}$ and isolated as a monomer (red solid), which, in solution at rt, gradually transformed into an equilibrium mixture ($\mathbf{1 a}: \mathbf{1 a}^{\prime}=2: 1$) of monomer $\mathbf{1 a}$ and the $[4+2]$ cycloadduct dimer 1a' (see Scheme 2). In comparison

Scheme 2
with the ${ }^{1} \mathrm{H}$ NMR spectral data of those of structurally analogous compounds, the ${ }^{1} \mathrm{H}$ NMR spectrum was interpreted as being due to a mixture of compounds $\mathbf{1 a}$ and $\mathbf{1 a}^{\prime}$. The synorientation of the phenyl and methyl groups at the ring juncture of dimer $\mathbf{1 a} \mathbf{a}^{\prime}$ was determined on the basis of the high-field shift of the methyl group due to the phenyl ring-current effect.

Heating of a mixture of dienone 1a and trinorbornadiene 2a in CHCl_{3} at $50^{\circ} \mathrm{C}$ gave the endo-exo cycloadduct 3aa in 94% yield (see Scheme 3). The IR spectrum of product 3aa exhibited a strained-ring carbonyl and an ester carbonyl at $1772 \mathrm{~cm}^{-1}$ and $1728 \mathrm{~cm}^{-1}$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum showed an asymmetrical spectral pattern due to asymmetrically substituted cyclopentadienone moiety. The bridged methylene proton signals appeared as an AB quartet at $\delta 1.25$ and $2.40(J 9.2 \mathrm{~Hz})$. The high-field shift of the former proton due to the stilbene ring-current effect suggested the structure of endo-exo [4 + 2] cycloadduct. The exolendo nature of the cycloadducts was

Table 1 Reaction conditions and products for the reaction of dienone $\mathbf{1 a}$ with dienophiles $\mathbf{2 a - d}$ in CHCl_{3}

Dienophile	Temp. $\left(T /{ }^{\circ} \mathrm{C}\right)$	Time (t / h)	Yield $(\%)$	Product proportions ${ }^{a}$		
$\mathbf{2 a}$	50	1.0	$94(\mathbf{3 a a})$			
2b	50	0.5	67	$1(\mathbf{3 a b})$	$8.8\left(\mathbf{3 a b}^{\prime}\right)$	0
2d	reflux	12.0	75	$8(\mathbf{3 a c})$	$1\left(\mathbf{3 a c}^{\prime}\right)$	0
2d	50	1.5	54	$7(\mathbf{3 a d})$	$2.5\left(\mathbf{3 a d}^{\prime}\right)$	$1\left(\mathbf{(3 a d}^{\prime \prime}\right)$

${ }^{a}$ The product proportions were determined by integration of the ${ }^{1} \mathrm{H}$ signals of the 270 MHz NMR spectrum. See Scheme 3 .

1a: $\mathrm{Z}=\mathrm{CO}_{2} \mathrm{Me}$
3aa

syn-endo (3ab-ad)

syn-exo (3ad")
anti-endo (3ab'-ad')
$+$

Scheme 3
determined on the basis of the general rule of heteronuclear multiple-bond connectivity (HMBC) spectral correlation for the bicyclo[2.2.1]hepten-7-one skeleton. ${ }^{5}$

Similarly, the cycloadditions of substrate $\mathbf{1 a}$ with methyl acrylate 2b, allyl ethyl ether $\mathbf{2 c}$ and styrene $\mathbf{2 d}$ were carried out (Table 1). The structures of the cycloadducts were determined by comparison of the IR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectral data with those of the known cycloadducts of olefins $\mathbf{2 b} \mathbf{-} \mathbf{d}$ and dienone 1b or 2,5-diethyl-3,4-diphenylcyclopentadienone 1c. ${ }^{6}$ The endolexo and antilsyn natures of the product were established by inspection of the HMBC spectrum. ${ }^{5}$ The product proportions due to the endolexo and synlanti isomers were determined by inspection of the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products (Table 1).

In the cycloadditions of dienone $\mathbf{1 a}$ with olefin $\mathbf{2 b} \mathbf{b}$ d, regioisomeric product may be produced for the endo and exo isomers (Table 1). In the case of acrylate 2b, the syn-endo 3ab and antiendo $\mathbf{3} \mathbf{a} \mathbf{b}^{\prime}$ cycloadducts were formed in the ratio $1: 8.8$, wherein syn and anti are defined with regard to the arrangement of the ester groups of both addends. The ratio of the syn-endo 3ac and anti-endo 3ac' cycloadducts from $\mathbf{2 c}$ is $8: 1$. The cycloaddition of dienone 1a with styrene 2d gave syn-endo 3ad, syn-exo 3ad" and anti-endo 3ad' cycloadducts ($\mathbf{3 a d}: \mathbf{3 a d}^{\prime \prime}: \mathbf{3 a d}^{\prime}=7: 1: 2.5$ and syn: anti = 3.3:1).

Cycloaddition of 1a with nonoconjugated dienes

In our previous paper, ${ }^{7}$ we reported that cycloaddition of compound $\mathbf{1 b}$ with nonconjugated dienes such as cycloocta-1,5-
diene 2 e and hexa-1,5-diene $\mathbf{2 f}$ gave the Diels-Alder (DA) adducts, which on heating above $170^{\circ} \mathrm{C}$ underwent sequential pericyclic reactions [decarbonylation and intramolecular DA (IMDA) reaction] to give the double DA (DDA) adducts. Similarly, dienone 1a cycloadded to dienes 2e and 2 f to give the DDA adducts 4ae and 4af, respectively (see Scheme 4).

The decarbonylation rate of the DA adducts was affected by the bridgehead substituents. In the case of the DA adduct of dienone 1a, prolonged or higher temperature heating was needed for the completion of decarbonylation leading to the DDA adduct. The DA adducts of compound 1c and 2e did not undergo decarbonylation under the reaction conditions with dienones $\mathbf{1 a}$ and $\mathbf{1 b}$.

Table 2 shows the reaction conditions and yields of the DDA adducts prepared by one-pot procedures via three-step sequential pericyclic reactions.

Cycloaddition of dienone 1a with conjugated polyenes

Cycloaddition of dienone 1a with cycloheptatriene $\mathbf{2 g}$ proceeded in CHCl_{3} at $60^{\circ} \mathrm{C}$ to afford the exo $[4+6] \mathbf{5 a g}$, antiendo $[2+4] 8$ ag and syn-endo $[2+4] 9 \mathrm{ag}$ cycloadducts, in which syn and anti are defined in regard to the arrangement of the ester (Z) and the methylene (X) moieties. The cycloadducts 8ag and 9 ag were considered to be formed from the [3,3]sigmatropic rearrangement of the corresponding anti-endo $[4+2] \mathbf{6 a g}$ and syn-endo $[4+2] 7 \mathbf{a g}$ cycloadducts, respectively (Scheme 5).
The formation proportions of the cycloadducts 5ag, 8ag and $\mathbf{9 a g}$ are 2.2:2:1. The structures of the cycloadducts $\mathbf{5 a g}$ and 8ag were determined by comparison of their IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data with those of the known cycloadducts $\mathbf{5} \mathbf{b g}$ and $\mathbf{8} \mathbf{b g}$ derived from cycloaddition of dienone $\mathbf{1 b}$ with cycloheptatriene 2g. ${ }^{1 b}$ The important assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of adducts $\mathbf{5 a g}$ and $\mathbf{8 a g}$ are shown here with the structural formulae.

Cycloaddition of dienone 1a with tropone $\mathbf{2 h}$ only gave the exo $[4+6]$ cycloadduct 5ah.

Table 2 Double Diels-Alder adducts from the cycloadditions of dienones $\mathbf{1}$ and dienophiles $\mathbf{2 e}, \mathbf{f}$ (Scheme 4)

Diene	Dienophile	Temp. $\left(T /{ }^{\circ} \mathrm{C}\right)$	Time (t / h)	Product	Yield (\%)	Ref.
$\mathbf{1 a}$	$\mathbf{2 e}$	180	10	4ae	25	
1b	2e	170	10	4be	58	$7 a$
1c	2e	200	44	4ce	20	$7 b$
1a	$\mathbf{2 f}$	180	5	4af	4	
1b	$\mathbf{2 f}$	150	8	4bf	70	$7 a$

Cycloaddition of dienone 1a with N -ethoxycarbonyl- 1 H azepine $2 \mathbf{i}$ proceeded in CHCl_{3} at $50^{\circ} \mathrm{C}$ to afford the endo $[2+4]$ cycloadduct 11ai. The structure of the cycloadduct 11ai was determined by comparison of the IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data with those of the known cycloadduct 11bi derived from cycloaddition of dienone $\mathbf{1 b}$ with carbamate $\mathbf{2 i} .^{16}$ The important assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of adduct 11ai are shown above. The cycloadduct 11ai was assumed to be formed via [3,3]-sigmatropic rearrangement of the corresponding endo $[4+2]$ intermediate 10ai at the $C(3)-C(4)$ position (see Scheme 5).

Cycloaddition of dienone $\mathbf{1 a}$ with 6,6-dimethylfulvene $\mathbf{2 j}$ gave the endo $[4+2]$ cycloadduct 3aj.

Cycloaddition reactivity

To compare the cycloaddition reactivity of dienone 1a with
those of analogues $\mathbf{1 b}$ and $\mathbf{1 c}$, the reaction rates were measured by following the decrease of dienone 1a in its reaction with compound $2 \mathbf{2 a}$. The pseudo-first-order rate constants are summarized in Table 3 which includes the relative rates of dienones $\mathbf{1 b}$ and 1c. The reactivity of compound $\mathbf{1 a}$ was found to be intermediate between those of dienones $\mathbf{1 b}$ and $\mathbf{1 c}$.

Discussion

The reaction behavior of dienone $\mathbf{1 a}$ is considered to fall under the category of inverse-type cycloaddition ${ }^{8}$ in which the interaction between the LUMO of dienone 1a and the HOMO of dienophiles is dominant (see Fig. 1). The cycloaddition reactivity of dienone 1a deduced from the cycloaddition conditions and the kinetic data is clearly affected by the 2,5 -substituents, being in accord with the FMO prediction (see Table 4).

The exclusive formation of the endo-exo cycloadduct 3aa

1b

1c

$$
\mathrm{Z}=\mathrm{CO}_{2} \mathrm{Me}
$$

LUMO
-1.513

Fig. 1 PM3-Calculated FMO energy levels of cyclopentadienones 1a-c and coefficients of compound 1a.

Table 3 Pseudo-first-order rate constants (k) for cycloadditions of dienones 1a-c with trinorbornadiene 2a in benzene at $40^{\circ} \mathrm{C}$

Dienone	$k \times 10^{-4}\left(\mathrm{~s}^{-1}\right)$	$k_{\mathbf{1 b}} / k_{1 \mathbf{a}}$	$k_{1 \mathbf{c}} / k_{\mathbf{1 a}}$
$\mathbf{1 a}$	1.73		
$\mathbf{1 b}$	19.4	11.2	
$\mathbf{1 c}$	0.04		2.3×10^{-2}

5ag

8ag

11ai

5bg

8bg

11bi

Comparison of δ_{H} and δ_{C} NMR (in parentheses) spectral data of adducts 5ag, 8ag and 11ai with those of analogues 5bg, 8bg and 11bi.
from cycloaddition of dienone 1a with compound 2a can be accounted for by asymmetrical p-orbitals of dienophile 2a in which the exo-oriented p lobes are larger than the endo
ones owing to $\sigma-\pi$ interactions between the adjacent strained σ bonds and the p-orbitals. ${ }^{9}$

In general, the regioselectivity obeyed the rule of large-large/ small-small interaction of the coefficients at the reaction sites. ${ }^{2 b}$ In the cycloaddition with compound $\mathbf{2 b}$, the interaction between the HOMO of dienone 1a and the LUMO of dienophile $\mathbf{2 b}$ is dominant. Although the difference in the HOMO coefficients of the reaction site is small (C-2: -0.523 and $\mathrm{C}-5$: 0.523), the anti-endo cycloadduct is dominant, in accord with the FMO prediction (Table 4). Involvement of the secondary orbital interaction ${ }^{10}$ in the calculation of the perturbation equation also supports the FMO prediction based on the primary interactions.

In the cycloaddition with styrene 2d, although the steric repulsion between the ester and phenyl substituents is operative, the cycloadduct with a syn relationship between the ester and phenyl groups is the main product. The dominant FMO interaction as inverse-type cycloaddition accounts for the regioselectivity observed (see Fig. 2).

The regioselectivity observed in adducts 3ac and 3af can be explained in terms of the FMO theory.

As described above, the overall pericyclic reaction behavior of dienones $\mathbf{1}$ toward cycloheptatriene $\mathbf{2 g}$ is still obscure. In Scheme 1, the R1-type cycloadduct has been isolated but the corresponding primary cycloadduct P1 has not yet been isolated. On the other hand, in the reaction of phencyclone $\mathbf{1 d}$ with carbamate $\mathbf{2 i}$, the primary $[4+2]$ cycloadduct ($\mathbf{P} 2$-type) at the $\mathrm{C}(3)-\mathrm{C}(4)$ position was isolated and its [3,3]-sigmatropic rearrangement to the $[2+4]$ cycloadduct (R2-type) was studied (see Scheme 6). ${ }^{1 d}$ The same type of cycloadduct was isolated in the reaction of carbamate $\mathbf{2 i}$ with dienones $\mathbf{1 a}$ and $\mathbf{1 b} .^{\mathbf{1 e}}$

To investigate the presence of the primary $[4+2]$ cycloadduct ($\mathbf{P} 1$-type) derived from attack at the $\mathrm{C}(1)-\mathrm{C}(2)$ position in the crude reaction mixture of substrates $\mathbf{1 a}, \mathbf{b}$ and $\mathbf{2 g}$, timecourse experiments by ${ }^{1} \mathrm{H}$ NMR and TLC analyses were carried out. However, we could not recognize any intermediate ascribable to the primary cycloadduct even under very mild reaction conditions. At first, this result seemed to indicate that the $[2+4]$ cycloadduct is formed from the direct cycloaddition of dienone $\mathbf{1 a}$ and cycloheptatriene $\mathbf{2 g}$, in which dieone $\mathbf{1 a}$ acts as 2π rather than, as is more usual, a 4π component (see Scheme 7). If this assumption is true, the site selectivity of compound 1a should be reversed. Analysis of the LUMO coefficients of dienone 1a predicts the dominant formation of a different type

Table 4 FMO energy levels of dienone 1a and dienophiles $\mathbf{2}$ and reaction type of the corresponding cycloaddition

Diene 1a	Dienophile							
	2b	2 c	2d	2 f	2g	2 h	2 i	2 j
Orbital levels								
HOMO -9.47	-11.06	-10.03	-9.13	-10.06	-8.95	-9.55	-8.82	-9.01
LUMO -1.51	-1.43	1.08	-0.13	1.06	-0.04	-0.63	-0.47	-0.62
Reaction type	normal	inverse						

Scheme 6
of $[2+4]$ cycloadduct, compound $9 \mathbf{9 a g}$. In contrast, the predominant formation of $[2+4]$ cycloadduct 8ag via initial P1-type [4+2] cycloadduct at the $\mathrm{C}(1)-\mathrm{C}(2)$ position is consistent with theoretical predictions as discussed above. These suggest that the P1-type cycloaddition occurs according to the large-large/small-small interaction rule followed by relatively fast [3,3]-sigmatropic rearrangement.
In the cycloaddition of dienone $\mathbf{1 a}$ with cycloheptatriene $\mathbf{2 g}$, the endo $[4+2]$ cycloaddition at the $\mathrm{C}(1)-\mathrm{C}(2)$ position may produce the syn and anti regioisomers as shown in Scheme 5. The predominant formation of the anti isomer (with respect to the ester and methylene groups) can be explained by FMO theory. ${ }^{10}$

In the cycloaddition of cyclopentadienones with cycloheptatriene $\mathbf{2 g}$, the presence of the [3,3]-sigmatropic rearrangement product ($\mathbf{R 2}$-type) of the endo $[4+2]$ cycloadduct at the $\mathrm{C}(3)-\mathrm{C}(4)$ position ($\mathbf{P} 2$-type) is puzzling. Inspection of the coefficients of compound $\mathbf{2 g}$ indicates that the magnitudes of the $\mathrm{C}(3)$ and $\mathrm{C}(4)$ coefficients $(+0.429)$ are almost the same as those of $\mathrm{C}(1)$ and $\mathrm{C}(6)(-0.423)$, indicating that both endo $[4+2]$ attack at the $\mathrm{C}(3)-\mathrm{C}(4)$ position and exo $[4+6]$ attack are similarly preferable (see Fig. 2). In the cycloadditions of dienones $\mathbf{1 a - c}$ with triene $\mathbf{2 g}$, the absence of the R2-type cycloadduct is assumed to be due to the nonbonded H / H interaction between the methylene hydrogens of thiene $\mathbf{2 g}$ and two phenyl ortho-hydrogens of dienones $\mathbf{1 a - c}$ in the transition state (Fig. 3). This assumption is supported by the fact that the formation of similar types of [4+2] cycloadducts has been observed with carbamate $\mathbf{2 i}$ which does not have sterically hindered methylene hydrogens at the 1-position.

In the formation of the exo $[4+6]$ cycloadduct, the $\sigma-\pi$ interaction ${ }^{11}$ between the methylene hydrogen of cycloheptatriene 2 g and $\mathrm{C}(3)$ and $\mathrm{C}(4)$ seems to be operative in the transition state (Fig. 4).

In the case of tropone $\mathbf{2 h}$, the formation of the exo $[4+6]$

8 ag (main)

Scheme 7
cycloadduct can be accounted for in terms of FMO theory, in which the largest coefficients are found for the $C(2)$ and $C(7)$ positions.

2b (LUMO)

2d

2g

$2 i$

2c

$2 f$

2h

2j

Fig. 2 HOMO coefficients of asymmetrical dienophiles $\mathbf{2 b}-\mathbf{d}, \mathbf{2 f}-\mathbf{j}$ calculated by PM3.

Fig. 3 Schematic representation of H / H interaction in the cycloaddition of dienones $\mathbf{1 a - c}$ with cycloheptatriene $\mathbf{2 g}$.

Fig. 4 Schematic representation of $\sigma-\pi$ interaction in the cycloaddition of dienones $\mathbf{1 a - c}$ with cycloheptatriene $\mathbf{2 g}$.

In summary, the regioselectivities in the cycloadditions of the cyclopentadienone 1a with various unsaturated compounds involving conjugated medium-ring polyenes could be rationalized by FMO theory. The periselectivity toward cycloheptatriene $\mathbf{2 g}$ is explained on the basis of FMO considerations plus additional factors. The site selectivity of dienone 1a toward triene $\mathbf{2 g}$ seems to give us a clue as to the formation mechanism of the [3,3]-sigmatropic rearrangement products.

Experimental

Mps were measured on a Yanagimoto MP-J2 apparatus and are uncorrected. IR spectra were taken with a Hitachi 270-30 spectrophotometer. High-resolution mass spectra (HRMS) were taken with a JEOL JMS-DX303HF spectrometer. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMBC spectra were taken with JEOL JNM-EX $270(270 \mathrm{MHz})$ and JNM-A $500(500 \mathrm{MHz})$ spectrometers for $\sim 10 \%$ solutions with SiMe_{4} (TMS) as an internal standard;
chemical shifts are expressed as δ-values and the coupling constants (J) are expressed in Hz . UV spectra were recorded on a Simadzu UV-2500PC spectrophotometer.

Materials

2,5-Bis(methoxycarbonyl)-3,4-diphenylcyclopentadienone ${ }^{4} \mathbf{1 b}$ and 2,5-diethyl-3,4-diphenylcyclopentadienone ${ }^{12} \mathbf{1 c}$ were prepared according to the previously reported methods.

2-Methoxycarbonyl-5-methyl-3,4-diphenylcyclopentadienone 1a

A mixture of benzil $(21.0 \mathrm{~g}, 0.1 \mathrm{~mol})$, methyl propionylacetate $(26.0 \mathrm{~g}, 0.2 \mathrm{~mol})$ and potassium hydroxide $(1.5 \mathrm{~g})$ in 160 ml of methanol was stirred at reflux for 48 h . The solvent was then removed under reduced pressure. The residue was diluted with benzene and the solution was washed three times with water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent was removed under reduced pressure. The residual oils was then dehydrated as described in the following procedure.

The carbinol ($30.2 \mathrm{~g}, 0.09 \mathrm{~mol}$) was added to 54.4 ml of acetic anhydride containing 3 drops of concentrated sulfuric acid. The mixture were stirred for 5 min at rt . The solution was added to 610 ml of water with stirring. The precipitated oil was taken up in benzene. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent was removed under reduced pressure. The solid was collected and red crystals of title compound $\mathbf{1 a}(18.9 \mathrm{~g}$, 69%) were obtained: red powder, $\mathrm{mp} 137-139^{\circ} \mathrm{C}$ (Found: M^{+}, 304.1092. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\left.M, 304.1087\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1708(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.89(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.69(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe})$ and $6.89-7.36(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.3$ (Me), $52.0(\mathrm{OMe}), 127.8,128.3,128.9,129.2,129.3$ and 130.3 (ArC), 117.6, 127.4, 132.3, 132.5, 151.8 and 163.3 (quaternary C), 167.8 (ester $\mathrm{C}=\mathrm{O}$) and $197.3(\mathrm{C}=\mathrm{O}) ; m / z(\mathrm{EI}) 304\left(\mathrm{M}^{+}\right.$, $58 \%) ; \lambda_{\text {max }}\left(n\right.$-hexane) $/ \mathrm{nm} 428\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 13.8\right)$ and 312 (1394.4).

Compound 1a': $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.64$ and $1.30(6 \mathrm{H}, \mathrm{s}$, methyl $\times 2$), 3.34 and $3.74(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2)$ and $7.00-7.39$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.82$ and 17.5 (methyl $\times 2$), 51.3 and $51.6(\mathrm{OMe} \times 2), 59.7,62.1,66.2$ and 69.1 (quaternary carbon), 126.5, 126.8, 127.3, 127.4, 127.6, 128.3, $128.5,128.7,128.8,129.4,129.6,129.9,130.3,130.8$ and 131.5 (aromatic CH), 131.9, 132.0, 133.5, 138.2, 138.3, 143.1 and 143.6 (quaternary carbon), 165.3 and 171.3 (ester $\mathrm{C}=\mathrm{O}$), 194.1 (enone $\mathrm{C}=\mathrm{O}$) and 202.0 (bridge $\mathrm{C}=\mathrm{O}$).

Cycloadditions of dienone 1a with dienophiles (general procedure)

A mixture of dienone $\mathbf{1 a}(0.5 \mathrm{~g}, 1.64 \mathrm{mmol})$ and an excess of dienophile (4.93-16.4 mmol) in $\mathrm{CHCl}_{3}(1 \mathrm{ml})$ was heated at $50^{\circ} \mathrm{C}$ until the red color disappeared. The solvent was removed under reduced pressure. The residual oil was treated with methanol to give a solid, which was collected, and recrystallized from EtOH to give the cycloadduct as prisms.

Each cycloadduct was isolated as a mixture of stereoisomers and its formation ratio was determined by $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy.

The following compounds were obtained by essentially the same procedure as described above.
(1 $\alpha, 4 \alpha, 4 a \beta, 5 \beta, 8 \beta, 8 a \beta)-5-M e t h o x y c a r b o n y l-8-m e t h y l-6,7-$

diphenyl-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaph-

thalen-9-one 3aa. Prisms (94%), mp $155-156{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{C}, 81.8 ; \mathrm{H}, 6.1 . \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.79 ; \mathrm{H}, 6.10 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1772$ (bridge $\mathrm{C}=\mathrm{O}$) and 1728 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.01$ $(1 \mathrm{H}, \mathrm{d}, J 8.5,8 \mathrm{a}-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{d}, J 9.2,10-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{d}, J 8.5$, $4 \mathrm{a}-\mathrm{H}), 2.94(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 3.35(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.52(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.30-6.31(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.40-6.41(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.02-$ $7.32(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.1$ (Me), 40.7 (C-10), 43.3 (C-1), 4.35 (C-4a), 45.1 (C-4), 48.3 (C-8a), 51.9
(OMe), 58.3 (C-8), 67.4 (C-5), 127.4, 127.6, 127.8, 128.0, 128.3 and 128.4 (ArC), 134.6, 136.5 and 139.1 (quaternary C), 140.9 (C-2), 141.1 (C-3), 169.3 (ester $\mathrm{C}=\mathrm{O}$) and 193.7 (bridge $\mathrm{C}=\mathrm{O}$); m / z (EI) $396\left(\mathrm{M}^{+}, 25 \%\right)$ and $368\left(\mathrm{M}^{+}-\mathrm{CO}, 12\right)$.

1,5endo-Bis(methoxycarbonyl)-4-methyl-2,3-diphenylbicyclo-[2.2.1]hept-2-en-7-one 3ab'. Prisms (67%) mp 129-130 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 73.8; H, 5.6. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5}$ requires C, $73.83 ; \mathrm{H}$, 5.68%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1792$ (bridge $\mathrm{C}=\mathrm{O}$) and 1738 (ester $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52(1 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.73(1 \mathrm{H}, \mathrm{dd}$, $J 5.5$ and $12.8,6-\mathrm{H}$ endo $), 2.84(1 \mathrm{H}$, dd, $J 9.8$ and $12.8,6-\mathrm{H}$ exo), $3.05(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $9.8,5-\mathrm{H}), 3.40$ and $3.57(6 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe} \times 2)$ and $6.94-7.22(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 12.4 (Me), 29.3 (C-6), 45.6 (C-5), 51.7 and 52.1 (OMe), 58.3 (C-4), 63.5 (C-1), 127.2, 127.5, 127.6, 127.7, 128.0, 128.4, 128.7, 129.3 and 129.5 (ArC), 133.3, 133.4, 138.9 and 140.2 (quaternary C), 168.3 and 171.9 (ester $\mathrm{C}=\mathrm{O}$) and 196.5 (bridge $\mathrm{C}=\mathrm{O}$); $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 390\left(\mathrm{M}^{+}, 7 \%\right), 362\left(\mathrm{M}^{+}-\mathrm{CO}, 13 \%\right)$.

Inspection of the NMR spectrum of the oily crude product from the filtrate indicated the presence of the syn DA adduct 3ab besides 3ab'. However, compound 3ab could not be isolated because of cleavage of the strained ketonic bond during chromatography on silica gel.

5endo-Ethoxymethyl-4-methoxycarbonyl-1-methyl-2,3-diphenylbicyclo[2.2.1]hept-2-en-7-one 3ac. Prisms (75\%), mp $110-112{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 76.85 ; H, 6.6. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}, 6.71 \%$); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1770$ (bridge $\mathrm{C}=\mathrm{O}$) and 1736 (ester $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19(1 \mathrm{H}, \mathrm{t}, J 7.32$, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.43(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and 12.2 , $6-\mathrm{H}$ endo $), 2.04(1 \mathrm{H}$, dd, $J 9.8$ and 12.2, 6-H exo), 3.32-3.36 $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J 9.2\right.$ and $\left.7.3, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.51-3.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81$ ($1 \mathrm{H}, \mathrm{dd}, J 6.7$ and 9.2, $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$) and $7.01-7.31(10 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.4(\mathrm{Me}), 15.1\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 34.9 (C-6), 37.7 (C-5), 51.9 (OMe), 52.0 (C-1), 54.8 (C-4), $66.3\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $72.1\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 127.1, 127.4, $127.6,128.1,128.2,128.3,128.6,129.1,129.4$ and $129.5(\mathrm{ArC})$, 134.2, 134.4, 136.3 and 143.1 (quaternary C), 168.7 (ester $\mathrm{C}=\mathrm{O}$) and 198.8 (bridge $\mathrm{C}=\mathrm{O}$); m / z (EI) 390 ($\mathrm{M}^{+}, 12 \%$) and 362 (M^{+}- CO, 39).

Inspection of the NMR spectrum of the oily crude product from the filtrate indicated the presence of the anti DA adduct 3ac' besides 3ac. However, adduct 3ac' could not be isolated because of cleavage of the strained ketonic bond during chromatography on silica gel.

4-Methoxycarbonyl-1-methyl-2,3,5endo-triphenylbicyclo-

[2.2.1]hept-2-en-7-one 3ad. Needles (50%), $\mathrm{mp} 165-166^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 82.4; H, 6.0. $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C, $82.33 ; \mathrm{H}, 5.92 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1770$ (bridge $\mathrm{C}=\mathrm{O}$) and 1736 (ester $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.17(1 \mathrm{H}$, dd, $J 6.1$ and $12.8,6-\mathrm{H}$ endo $), 2.38(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $12.8,6-\mathrm{H}$ exo), $3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.35(1 \mathrm{H}, \mathrm{dd}, J 6.1$ and $9.8,5-\mathrm{H})$ and 6.16-7.57 ($15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.7(\mathrm{Me}), 38.7$ (C-6), 42.2 (C-5), 51.7 (OMe), 55.5 (C-1), 71.0 (C-4), 126.7, 127.2, 127.3, 127.4, 128.4, 128.5, 128.6, 129.2 and 129.5 (ArC), 133.9, 134.0, 136.9, 140.5 and 141.8 (quaternary C), 168.4 (ester $\mathrm{C}=\mathrm{O}$) and 198.5 (bridge $\mathrm{C}=\mathrm{O}$); $m / z(\mathrm{EI}) 408\left(\mathrm{M}^{+}, 37 \%\right)$ and 380 $\left(\mathrm{M}^{+}-\mathrm{CO}, 40\right)$.

4-Methoxycarbonyl-1-methyl-2,3,5exo-triphenylbicyclo-

 [2.2.1]hept-2-en-7-one 3ad ${ }^{\prime \prime}$. Prisms (4%), mp 138-140 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 82.4; H, 6.05\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1771$ (bridge $\mathrm{C}=\mathrm{O}$) and 1734 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.98(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $12.2,6-\mathrm{H}$ endo $), 2.56(1 \mathrm{H}$, dd, $J 11.0$ and $12.2,6-\mathrm{H}$ exo $), 3.27(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.57(1 \mathrm{H}$, dd, $J 5.5$ and $11.0,5-\mathrm{H})$ and $7.07-7.38(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 12.1 (Me), 42.3 (C-6), 46.5 (C-5), 51.4 (OMe), 54.0 (C-1), 67.2 (C-4), 126.7, 127.3, 127.5, 127.7, 128.1, 128.3,128.5 and 129.0 (ArC), 133.5, 133.6, 141.1, 142.6 and 144.4 (quaternary C), 167.6 (ester $\mathrm{C}=\mathrm{O}$) and 200.0 (bridge $\mathrm{C}=\mathrm{O}$); $m / z(\mathrm{EI}) 408\left(\mathrm{M}^{+}, 7 \%\right)$ and $380\left(\mathrm{M}^{+}-\mathrm{CO}, 12\right)$.
Inspection of the NMR spectrum of the oily crude product from the filtrate indicated the presence of the anti-endo DA adduct 3ad' besides 3ab. However, adduct 3ab' could not be isolated because of cleavage of the strained ketonic bond during chromatography on silica gel.

2-Methoxycarbonyl-5-methyl-3,4-diphenyltricyclo[4.4.1.1 ${ }^{2,5}$]-dodeca-3,7,9-trien-12-one 5ag. Needles (24%), mp 179-183 ${ }^{\circ} \mathrm{C}$ (from EtOH-AcOEt) (Found: C, 81.75; H, 6.0. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.79 ; \mathrm{H}, 6.10 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1764$ (bridge $\mathrm{C}=\mathrm{O}$) and 1730 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19(3 \mathrm{H}, \mathrm{s}$, Me), $1.68(1 \mathrm{H}, \mathrm{d}, J 14.0,11-\mathrm{H}), 2.52-2.64(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 2.85-$ $2.86(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.48(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89-3.90(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, 6.05-5.96 ($3 \mathrm{H}, \mathrm{m}, 7-, 8-\mathrm{and} 9-\mathrm{H}$), 6.39-6.43 ($1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$) and 7.10-7.34 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.7$ (Me), 25.3 (C-11), 42.2 (C-6) 44.5 (C-1), 51.9 (OMe), 52.3 (C-5), 60.9 (C-2), 126.3, 126.4 and 132.8 (C-7, -8 and -9), 127.7, 127.8, 128.3, 128.4, 129.1 and 130.5 (ArC), 134.1 (C-10), 134.2, 134.8, 135.6 and 141.9 (quaternary C), 169.6 (ester $\mathrm{C}=\mathrm{O}$) and 203.0 (bridge $\mathrm{C}=\mathrm{O}$); $m / z(\mathrm{EI}) 396\left(\mathrm{M}^{+}, 33 \%\right)$ and $365\left(\mathrm{M}^{+}-\mathrm{OMe}\right.$, 22).

2-Methoxycarbonyl-8a-methyl-3,3a-diphenyl-4,7,8,8a-tetra-hydro-4,8-ethenoazulen-1(3aH)-one 8ag. Powder (32%), mp $162-164{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 81.8; H, 6.0. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.79 ; \mathrm{H}, 6.10 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1764$ (bridge $\mathrm{C}=\mathrm{O}$) and 1730 (ester $\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 2.19-2.15(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.35-2.39(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.92-2.97$ ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.78-3.82 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $5.94-$ $6.23(4 \mathrm{H}, \mathrm{m}, 5-, 6-, 9-\mathrm{and} 10-\mathrm{H})$ and $7.09-7.31(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.2$ (Me), 28.1 (C-7), 43.3 (C-4), 52.0 (OMe), 59.5 (C-8a), 61.1 (C-8), 67.9 (C-3a), 127.2, 127.3, 127.4, 127.7, 128.2, 128.5 and 128.6 (ArC), 128.9, 129.4, 129.8 and 134.5 (C-5, -6, -9 and -10), 134.7, 134.9, 138.5 and 142.8 (quaternary C), 168.6 (ester $\mathrm{C}=\mathrm{O}$) and 197.8 (enone $\mathrm{C}=\mathrm{O}$); m / z (EI) $396\left(\mathrm{M}^{+}, 36 \%\right)$ and $365\left(\mathrm{M}^{+}-\mathrm{OMe}, 55\right)$.

Inspection of the NMR spectrum of the oily crude product from the filtrate indicated the presence of the syn-endo DA adduct 9 ag besides 8ag.

2-Methoxycarbonyl-5-methyl-3,4-diphenyltricyclo[4.4.1.1 ${ }^{2,5}$]-dodeca-3,7,9-triene-11,12-dione 5ah. Needles (73%), mp 152$154{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 78.95; H, 5.4. $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 79.01 ; \mathrm{H}, 5.40 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1764$ (bridge $\mathrm{C}=\mathrm{O}$) and 1736 (ester $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.46(1 \mathrm{H}$, dd, J 4.89 and $8.4,6-\mathrm{H}), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.35-4.38(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.61-5.62(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 6.05-6.08$ $(3 \mathrm{H}, \mathrm{m}, 8-, 9-\mathrm{and} 10-\mathrm{H})$ and $6.96-7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 12.9 (Me), 52.3 (OMe), 59.6 (C-6), 59.8 (C-5), 62.2 (C-1), 68.1 (C-2), 122.4 (C-7), 123.9, 126.4 and 127.0 (C-8, -9 and -10), 127.8, 128.1, 128.4, 128.9, 134.6, 136.0 and 142.1 (ArC), 132.8, 133.2, 138.0 and 144.4 (quaternary C), 167.8 (ester $\mathrm{C}=\mathrm{O}$) and 200.5 and 203.7 (bridge $\mathrm{C}=\mathrm{O}$); m / z (EI) 410 $\left(\mathrm{M}^{+}, 45 \%\right)$ and $379\left(\mathrm{M}^{+}-\mathrm{OMe}, 25\right)$.
(1 $\alpha, 5 \alpha, 5 a \beta, 8 a \beta)-7-M e t h y l-6-0 x 0-8,8 a-d i p h e n y l-1,2,5,5 a, 6,8 a-$ hexahydro-1,5-ethenocyclopent[c]azepine-2,5a-dicarboxylic acid 2-ethyl 5a-methyl ester 11ai. Pale yellow prisms (84%) mp 159$160{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 74.2; H, 5.8; N, 3.0. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires $\mathrm{C}, 73.99 ; \mathrm{H}, 5.76 ; \mathrm{N}, 2.94 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1742$ (enone $\mathrm{C}=\mathrm{O}$) and 1692 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21$ ($3 \mathrm{H}, \mathrm{t}, J 7.33, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.22(1 \mathrm{H}, \mathrm{t}, J 7.94,5-\mathrm{H}), 4.07\left(2 \mathrm{H}, \mathrm{q}, J 7.33, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.21-$ $5.62(3 \mathrm{H}, \mathrm{m}, 1-, 4-\mathrm{and} 10-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{t}, J 7.93,9-\mathrm{H}), 6.63$ $(1 \mathrm{H}, \mathrm{d}, J 9.15,3-\mathrm{H})$ and $7.24-7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(125 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 11.4(\mathrm{Me}), 14.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 36.4(\mathrm{C}-5), 51.5(\mathrm{OMe}), 53.5$ $(\mathrm{C}-1), 62.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 63.1(\mathrm{C}-8 \mathrm{a}), 71.4(\mathrm{C}-5 \mathrm{a}), 109.4(\mathrm{C}-10)$,
122.9 (C-4), 123.8 (C-3), 133.9 (C-9), 124.1, 127.2, 127.6, 128.5, 129.4, 129.7, 129.9 and 130.3 (ArC), 138.5, 140.6 and 154.0 (quaternary C), 170.2 and 171.0 (ester $\mathrm{C}=\mathrm{O}$) and 204.1 (enone $\mathrm{C}=\mathrm{O}) ; m / z(\mathrm{EI}) 469\left(\mathrm{M}^{+}, 19 \%\right), 410\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 14\right), 304$ $\left(\mathrm{M}^{+}-\mathbf{2 i}, 32\right)$ and $165\left(\mathrm{M}^{+}-\mathbf{1 a}, 100\right)$.
(3a $\alpha, 4 \alpha, 7 \alpha, 7 \mathrm{a} \alpha$)-1-Isopropylidene-4-methoxycarbonyl-7-methyl-5,6-diphenyl-3a,4,7,7a-tetrahydro-1 H-4,7-methanoinden-8-one 3aj. Needles (74%), mp 154-156 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{C}, 81.5 ; \mathrm{H}, 6.1 . \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.92 ; \mathrm{H}, 6.38 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1778$ (bridge $\mathrm{C}=\mathrm{O}$) and 1728 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.59$ and $1.67(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} \times 2), 3.32(1 \mathrm{H}, \mathrm{d}, J 7.3,7 \mathrm{a}-\mathrm{H}), 3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.25$ ($1 \mathrm{H}, \mathrm{d}, J 7.3,3 \mathrm{a}-\mathrm{H}$), $6.04(1 \mathrm{H}, \mathrm{d}, J 7.0,2-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}$, $J 7.3,3-\mathrm{H})$ and $6.90-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 14.5, 21.3 and $23.3(\mathrm{Me} \times 3), 46.9(\mathrm{C}-7 \mathrm{a}), 50.9(\mathrm{OMe}), 52.1$ (C-3a), 60.1 (C-7), 66.0 (C-4), 127.1, 127.7, 127.8, 128.8 and 131.4 (ArC), 129.9 (C-2), 137.6 (C-3), 131.4, 134.1, 134.8, 136.8, 138.1 and 141.3 (quaternary C), 169.2, (ester $\mathrm{C}=\mathrm{O}$) and 198.4 (bridge $\mathrm{C}=\mathrm{O}$); m / z (EI) $410\left(\mathrm{M}^{+}, 25 \%\right.$) and 382 ($\mathrm{M}^{+}-\mathrm{CO}, 36$).

Thermolysis of the [4+2] cycloadducts of nonconjugated dienes (general procedure). Formation of DNA adduct

A mixture of compounds $\mathbf{1 a}(0.5 \mathrm{~g}, 1.64 \mathrm{mmol})$ and $\mathbf{2 e}(0.89 \mathrm{~g}$, 8.2 mmol) was heated at $180^{\circ} \mathrm{C}$ for 10 h in a sealed tube. The resulting oil was purified by chromatography on silica gel with AcOEt-benzene ($1: 20$) to give the DDA adduct as needles.
The following compounds were obtained by essentially the same procedure as above.

9-Methoxycarbonyl-12-methyl-10,11-diphenyltetracyclo[6.4.0.0 ${ }^{4,12} \cdot 0^{5,9}$]dodec-10-ene 4ae. Needles (25%), mp $152-$ $154{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 84.65; H, 7.6. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 84.34 ; \mathrm{H}, 7.34 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1722$ (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.48-1.54(2 \mathrm{H}, \mathrm{m}, 2$ - and $3-\mathrm{H}), 1.73-1.75(2 \mathrm{H}, \mathrm{m}, 6-$ and $7-\mathrm{H}), 1.84-1.86(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and}$ $4-\mathrm{H}), 1.90-1.94(4 \mathrm{H}, \mathrm{m}, 2-, 3-, 6-\mathrm{and} 7-\mathrm{H}), 2.50-2.59(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}$ and $8-\mathrm{H}), 3.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 6.81-7.26 (10H, m, ArH); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.4(\mathrm{Me}), 24.4,25.1,25.6$ and $25.7(\mathrm{C}-2$, $-3,-6$ and -7), 44.3 and 45.6 (C-5 and -8), 45.9 and 46.8 (C-1 and $-4), 50.9$ (OMe), 61.3 (quaternary C), 125.6, 125.7, 126.6, 126.8, $127.3,129.4,129.8,130.1$ and 130.3 (ArC), 137.6, 139.5, 140.8 and 143.1 (quaternary C) and 175.4 (ester $\mathrm{C}=\mathrm{O}$); m / z (EI) 384 $\left(\mathrm{M}^{+}, 100 \%\right)$ and $325\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 58\right)$.

7-Methoxycarbonyl-1-methyl-8,9-diphenyltricyclo[4.3.1.0 ${ }^{3,7}$]-dec-8-ene 4af. Powder (4%), mp 135-137 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C, 83.6; $\mathrm{H}, 7.0 . \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 83.76 ; \mathrm{H}, 7.31 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1726$ (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.27(2 \mathrm{H}, \mathrm{d}, J 11.6,2$ - and $10-\mathrm{H}), 1.58(2 \mathrm{H}, \mathrm{d}, J 8.6,4-$ and $5-\mathrm{H})$, $1.93-1.97(4 \mathrm{H}, \mathrm{m}, 2-, 4-, 5-$ and $10-\mathrm{H}), 2.69-2.70(2 \mathrm{H}, \mathrm{m}, 3-$ and $6-\mathrm{H}), 3.11(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $6.86-7.24(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 24.7 (Me), 31.0 (C-2 and -10), 36.4 (C-1), 39.5 (C-3 and -6), 47.3 (C-4 and -5), 51.1 (OMe), 62.9 (C-7), 125.7, 125.9, 127.0, 127.2, 129.2, 129.4 and 129.8 (ArC), 136.6, 138.9,
139.4 and 147.7 (quaternary C) and 175.2 (ester $\mathrm{C}=\mathrm{O}$); m / z (EI) $358\left(\mathrm{M}^{+}, 100 \%\right)$ and $299\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 73\right)$.

Kinetics

The pseudo-first-order conditions were maintained by using a $100: 1$ ratio of dienophiles to dienones $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ in benzene. The reaction rate was followed at $40.0 \pm 0.1^{\circ} \mathrm{C}$ by measuring the loss of the long-wavelength absorption (428 nm) of dienone 1a by using a $10 \times 10 \mathrm{~mm}$ quartz cell sealed with a ground-glass stopper, which was thermostatted at constant temperature. Pseudo-first-order rate constants were determined by a leastsquares method. The results are listed in Table 3.

Acknowledgements

We thank Miss Y. Rikitake for experimental assistance.

References

1 (a) K. Harano, M. Yasuda and K. Kanematsu, J. Org. Chem., 1982, 47, 3736; M. Yasuda, K. Harano and K. Kanematsu, (b) J. Am. Chem. Soc., 1981, 103, 3120; J. Org. Chem., (c) 1981, 46, 3836; (d) 1980, 45, 2368; (e) K. Harano, M. Yasuda, T. Ban and K. Kanematsu, ibid., 1980, 45, 4455; (f) T. Ban, Y. Wakita and K. Kanematsu, J. Am. Chem. Soc., 1980, 102, 5415; K. N. Houk and R. B. Woodward, ibid., (g) 1970, 92, 4145; (h) 1970, 92, 4143.
2 (a) K. Fukui, Kagaku Hanno to Densi no Kido (Chemical Reactions and Electron Orbitals), Maruzen, Tokyo, 1976; (b) I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.

3 S. Greenfield and K. Mackenzie, J. Chem. Soc., Perkin Trans. 2, 1986, 1651; (b) R. J. Atkins and G. I. Fray, Tetrahedron, 1979, 35, 1173.

4 D. M. White, J. Org. Chem., 1974, 39, 1951.
5 The long-range ${ }^{13} \mathrm{C}-\mathrm{H}$ couplings $\left({ }^{3} J\right)$ between the bridge carbonyl carbon and the exo and endo methylene protons of trinorboren-7one have been reported to be 0 and $5-9 \mathrm{~Hz}$, respectively: R. Y. S. Tan, R. A. Russel and R. N. Warrener, Tetrahedron Lett., 1979, 5031.

6 M. Mori, A. Hayamizu and K. Kanematsu, J. Chem. Soc., Perkin Trans. 1, 1981, 1259.
7 (a) K. Harano, K. Uchida, M. Izuma, T. Aoki, M. Eto and T. Hisano, Chem. Pharm. Bull., 1988, 36, 2312; (b) T. Jikyo, M. Eto and K. Harano, Tetrahedron, 1997, 53, 12415; (c) M. Eto, K. Uchida and K. Harano, ibid., 1994, 50, 13395; (d) G. I. Fray and A. W. Oppenheimer, Chem. Commun., 1967, 599.
8 R. Sustmann, Tetrahedron Lett., 1971, 2717, 2721.
9 (a) K. B. Astin and K. Mackenzie, J. Chem. Soc., Perkin Trans. 2, 1975, 1004; (b) P. H. Mazzocchi, B. Stahly, J. Dodd, N. G. Rondan, L. N. Domelsmith, M. D. Rozeboom, P. Caramella and K. N. Houk, J. Am. Chem. Soc., 1980, 102, 6482; (c) K. Mackenzie, Tetrahedron Lett., 1974, 1203; (d) S. Inagaki, H. Fujimoto and K. Fukui, J. Am. Chem. Soc., 1976, 98, 4054.
10 (a) P. V. Alston, R. M. Ottenbrite and D. D. Shillady, J. Org. Chem., 1973, 38, 4075; (b) P. V. Alston and R. M. Ottenbrite, ibid., 1975, 40, 1111; (c) P. V. Alston and D. D. Shillady, ibid., 1974, 39, 3402.
11 M. Sodupe, R. Rios, V. Branchadell, T. Nicholas, A. Oliva and J. J. Dannemberg, J. Am. Chem. Soc., 1997, 119, 4232 and references cited therein.
12 H. F. Allen and J. A. Vanallan, J. Am. Chem. Soc., 1950, 72, 5165.
Paper 8/04671I

